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The closed equations for the velocity correlation tensor and for the mean-squared 
displacement of a particle suspended in a stationary homogeneous turbulent flow, with 
an arbitrary linear law of fluid-particle interaction, are obtained using two assump- 
tions suggested previously for the problem of turbulent self-diffusion : the ‘ independ- 
ence approximation ’ and the Gaussian property of the functionaI distribution of 
particle velocities. The numerical solution of the derived equations is given for an 
isotropic system with a model turbulence spectrum. The following characteristics of 
the particle motion are obtained: (a)  the mean kinetic energy, ( b )  diffusivity, ( c )  rate of 
energy dissipation, (d) velocity correlation function, and ( e )  the correlation function of 
the relative fluid-particle velocity. The impact of various spectral modes on the 
characteristics of the particle motion is discussed. 

1. Introduction 
A solid particle suspended in turbulent flow fluctuates by responding to fluctuations 

in the velocity of the surrounding fluid. This response is governed by the equation of 
motion 

dwi/dt = K(w(t), u(r(t), t ) ) ,  (1 .1)  

which includes the force per unit particle mass expressed as a functional of the fluid 
and particle velocities, ui and wi, with ri denoting the particle position. A solution of the 
problem of the particle motion is implied by finding statistical characteristics of the 
random function wi(t) given the statistical description of the turbulent velocity field 
ui(r, t )  and the interaction law F,(w, u). 

is a complicated nonlinear expression. For the particular 
case of local linear interaction with a negligible ‘history term ’, ( 1 . 1 )  reduces to the 
quite innocuous form 

Yet even this relation, as was early realized (Lumley 1957; Friedlander 1957; So0 
1967), is haunted by intrinsic nonlinearity. The fluid velocity ui(r(t)) appearing in 
(1.1) and (1.2) can be viewed as a profile of the random field ui(r, t )  along the unknown 
particle trajectoryr,(t). Whileaffecting the trajectory, the functionu,(r(t)) is, in its turn, 
determined by the random particle movements, so that (1.2), contrary to its appear- 
ance, is actually an extremely complicated nonlinear functional equation. 

This basic difficulty was avoided (Tchen 1947) by assuming that a particle is perma- 
nently confined to the same fluid element. Such an assumption immediately allows 

In general the functional 

dwifdt = Y ( U ~  - w(). (1.2) 
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the use of Lagrangian correlations of flow velocity when solving (1.2) or its more sophis- 
ticated versions. An obvious corollary, independent of the form of the dynamic equa- 
tions, is the coincidence of the long-time particle diffusivity with the diflusivity of the 
fluid element. This conclusion holds in some cases, but it is exactly the difference in the 
motion of fluid elements and foreign particles which is most interesting to evaluate. 

While Tchen’s (1947) results are still widely used and cited (Levins & Glastonbury 
1972; Kuboi, Komasawa & Otake 1974) attempts have been made to improve the 
theory using the intuitive concept of random encounters between a moving particle 
and fluid elements (So0 1967) and the notion of crossing trajectories (Yudine 1959; 
Csanady 1963; Meek & Jones 1973). These works have elucidated two basic mechan- 
isms for the discrepancy between the diffusivities of fluid elements and foreign par- 
ticles: a trend to increasing particle diffusivity due to inertial effects and a counter- 
acting trend, usually stronger, to decreasing diffusivity due to the passing of a particle 
from one domain of strongly correlated fluid to another. 

Despite the undisputable usefulness of semi-quantitative theories, a treatment of 
the problem of particle motion does not appear fully satisfactory, unless it starts from 
‘first principles ), i.e. it is based on a direct solution of the stochastic dynamic equations 
(1.1) or (1.2). On the other hand, it may be argued that even an exact solution of these 
equations, were it ever found, would be practically useless. The most important 
characteristics of particle motion, notably, the velocity correlation function deter- 
mining the particle diffusivity, should depend not only on two-point correlation 
functions of turbulent flow, either Lagrangian or Eulerian, but on a whole hierarchy of 
correlations. Thus any reasonable set of data on turbulent flow, let alone data reported 
in the most comprehensive experimental studies of particle diffusion (Snyder & Lum- 
ley 1971; Goldschmidt & Householder 1969; Lilly 1973)) would not suffice for imple- 
mentation of the hypothetical exact theory, and one would have to wait for the arrival 
of a complete statistical theory of turbulence, no less hypothetical, to secure all 
relevant input data. 

A feasible middle way of approaching the problem consists of solving stochastic 
dynamic equations while assuming certain statistical hypotheses for the distribution 
of functional probabilities, akin to closure hypotheses in the theory of turbulence. This 
would allow solutions to be found in closed form excluding higher-order terms in the 
hierarchy of correlations. Such an approach, initiated by Saffman (1963)) was recently 
applied by Lundgren & Pointin (1976) to the problem of turbulent self-diffusion and it 
involves two major assumptions: (1) the characteristic function of the velocity field is 
Gaussian, i.e., it depends only on the second-order correlation (u,(O, 0) ui(r, t ) )  ; (2) 
Corrsin’s (1959) conjecture or an equivalent ‘independence approximation’ can be 
implemented, expressing the Lagrangian correlation tensor as the average of the 
Eulerian correlation function taken with respect to the uncertain position of the 
particle. 

Calculations based on the above assumptions compare well with Kraichnan’s 
(1 970) exact solutions for model turbulent spectra. The theoretical justification of 
these assumptions was given by Weinstock (1976). In  this work we suggest that this 
approach, which has proved satisfactory for the characterization of the motion of 
fluid elements, applies to the problem of particle motion as well. We start in $ 2  by 
transforming the dynamic equations in order to express the particle-velocity correla- 
tion tensor in terms of the fluid-velocity correlation tensor a t  the points lying on a 
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particle trajectory. In  Q 3, using the two aforementioned assumptions as applied to the 
functional distribution of particle trajectories, we derive the closed equation of the 
mean-squared particle displacement valid for the stationary motion of a particle in a 
stationary homogeneous turbulence with a linear law of fluid-particle interaction. An 
explicit numerical solution of the derived equation is performed in $4 for an isotropic 
system governed by the dynamic equation (1.2), using Kraichnan’s (1970) model 
spectra of turbulence. The following characteristics of particle motion are also calcu- 
lated: (a)  the mean kinetic energy, (b) diffusivity, ( c )  velocity correlation function, 
(d )  mean energy dissipation, and ( e )  the correlation function of the relative velocity of 
particle and surrounding fluid. These results +re then discussed in the last section. 
Effects of anisotropy induced by a determiqstic part of the particle velocity will be 
discussed in a later communication. 

2. Transformation of the dynamic equations 
Consider the dynamic equation ( 1 . 1 )  with a linear functional 4(u,  w). Introducing 

an appropriate Green’s function Rij(t - t’) ,  ( 1 . 1 )  can be rewritten in the integral form 

wi(t) - w,(O) = &(t - t’) uj(r(t’), t’) dt’ s: 
Summation over repeating indices is assumed here and elsewhere. It is convenient to 
use the co-ordinate framework moving with the mean flow velocity. The dependence of 
the Green’s function Ki j  only on the difference t - t’ is assured by the spatial and 
temporal invariance of the dynamic law of particle-fluid interaction. It is also useful 
to separate the deterministic and random parts of the particle velocity wi(t) : 

W i ( t )  = voi + v#), (Wi(t)) = 0, (2.2) 

with the bracketed term denoting the ensemble average. For a stationary particle 
motion the deterministic part voi should be constant, while the random part vi(t) is 
independent of the initial conditions. Separating also the random part of the particle 
displacement, 

(2.3) 

we reduce (2.1) to the form 

v&) = Kii(t-t’)uj(Vot’+p(t’), t’)dt‘. (2.4) Sb 
A particular form of the Green’s function, corresponding to the dynamic equation 

(2.5) 
(1.2), is K J t )  = ye+&. 

Although (1.2) is formally equivalent to an equation of motion for a Stokesian 
particle, Oseen’s inertial effects may be accounted for by merely modifying the particle 
time constant y-l. Boussinesq’s effect may be included by incorporating a complex 
time constant into the time Fourier transforms of (2.4) and (2.5). Moreover, a nonlinear 
interaction law may be reduced to the form (2.5) with a tensorial y if it can be linear- 
ized with respect to the random part of the relative velocity wi - ui (Lumley 1976). 
Thus, one can expect the Green’s function (2.5), with an appropriate time constant, 
to be valid as long as the Reynolds number based on a characteristic pulsation velocity 

7-2 
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does not exceed unity. More complicated kernels will appear in (2.1) if the history term 
is retained or when non-local effects due to the finite size of a particle are included in 
the dynamic equation. 

Using (2.4), the particle velocity correlation tensor can be written as 
1 

t-+W t-+m 0 
H,.(s) = Iim (vi(t) vj(t + s)) = lim (1 Kik(t - t’) ul,(t’) dt’ K,,(t +s - t ” )  uz(t”) df’) 

= lim / 1 ~ ~ ~ ( 7 )  d71‘+’ Kjz(7 + s - 8’) GkZ(8’) ds’, (2.6) 

(2.7) 

t - r m  - ( t - 7 )  
where s’ = t’ - t” and 

GkZW = ( U k ( 0 ,  0) udvot + f@)> t)> 

is the fluid velocity correlation tensor taken at points lying on a particle trajectory. 
Since we are interested in stationary characteristics of the particle motion, the 

t - tm limit should be considered. Changing the order of integration in the double 
integral in (2.6) yields 

where 

with a(x)  = 0 at z < 0 and a(.) = x a t  x > 0. 
For the particular Green’s function in (2.5) the particle velocity correlation tensor is 

given by the equation W 

Hij(s) = &y [ e-rls-s’lG. 23 .(a’) ds’. (2.10) 
J - W  

At y --f co, when the particle exactly follows all flow pulsations, (2.10) gives, as expected, 
H..(s) a3 E Gii(s). 

Equations (2.8) and (2.10) connect the particle velocity correlation tensor with the 
fluid velocity correlation tensor at points lying on a particle trajectory. These equations 
are exact, inasmuch as the dynamic equations involved in the transformation are 
valid, but still useless as long as the tensor Gij (s )  is not reduced to measurable correla- 
tions of fluid velocity. In  the following section the closed equation will be deduced 
using a procedure equivalent to that suggested by Lundgren & Pointin (1976). 

3. The equation for the mean-squared displacement 
Let the Fourier transform of the fluid velocity field be 

m 
ui(r, t) = 1 Ci(k, t )  e-ik.rd3k. (3.1) 

- w  

Then (2.7) may be written as 

G,(t) = exp[ -ik‘.vot] (zZ,(k, O)Cj(k‘,t)exp[-ik’.p(t)]) d3kd3k’. (3.2) 

The function exp [ - ik‘. p( t ) ]  is affected by the whole spectrum of the fluid velocity 
field acting on the particle during the time interval t .  If the dependence on anyparticu- 
lar components, with wavenumbers k and k’, is assumed negligible then 

(Ci(k, O)Qj(k’,t)exp[-ik’.p(t)]) z (C,(k,O)Cj(k’,t))(exp[-ik’.p(t)]). 
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Equation (3.2) reduces to 

exp [ - ik. vo t] Qii( k, t )  (exp [ - ik . p ( t ) ] )  d3k, (3.3) 

where, with 6 denoting the Dirac delta function, 

Qij(k, t )  6(k + k’) = (iii(k, 0) Gj(k’, t ) )  (3.4) 

is the spectral density of the fluid velocity field, or Fourier transform of the Eulerian 
correlation tensor 

a, 

G&, t )  = Qi5(k, t )  e-ik’rd3k. (3.5) 
-a 

The ‘independence approximation ’ involved in deriving (3.3) from (3.2) was shown by 
Lundgren & Pointin (1976) and Weinstock (1976) to be equivalent to Corrsin’s con- 
jecture. 

The average (exp [ - ik . p(t)]) is calculated using the assumption that the random 
function vi(t) is joint normal. The characteristic functional of a joint normal distribu- 
tion is 

m 

= exp [ - f j- s(t1) (v(t1) v(t2)) q(t2) d W 2 ] .  
- m  

Substituting 

in (3.6), we find 

q(tl) = k for 0 < t, < t and q(tl) = 0 otherwise 

] [ - / l ( t - s )  kk:H(s)ds . x kk : (v(tl) v(t2)) = exp I 
The last transformation implies the stationarity of the particle velocity distribution 

and the symmetry property of the correlation tensor Hij(s) = Hji( - s ) .  With Gij(s) 
defined by (3.3) and (3.8), we find that (2.8) acquires the closed form 

Hij(t) = LiKj l ( t - t ’ )d t ’ /  exp [-ik.v,t’] @D,,(k,t’)b(k,t’)d3k, (3.9) 
W 

s””, - - m  

s: 
where 

In &(k, t ’ )  = - (t’ - s)  ki kj Hii(s) ds. 

Note that when Likjl(t - t ’ )  = d’(t - t ’ )  Si, Sj, and v,, = 0, (3.9) reduces to Lundgren & 
Pointin’s (1976) equation for the Eulerian correlation tensor of fluid velocity. 

The above result (3.9) can be further transformed. Denoting the symmetric and 
antisymmetric parts of Hii by 

H:j = +(Hi j+Hj i )  and Hfj = &(Hij- Hji), (3.10) 

respectively, with the properties 

H:i(s) = H&( - 8 )  and HTj(s) = -H$( - a ) ,  (3.11) 
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Rii(t) = ( p i ( t ) p j ( t ) )  = fdt‘~‘dt’’(pil(t’) pii(t”)), (3.12) 
0 0  

we obtain 

R,,(t) = />’/‘-‘’Hii(s)ds = ( t -  [ ~ I ) & ~ ( s ) d s  = 2 (t-s)HZj(s)ds. (3.13) 
-1’ 

Here we have used both the stationarity and the symmetry properties of the correlation 
tensor Hii. 

Note that the second derivative of the displacement tensor corresponds to the 
symmetric part only and not to the full correlation tensor, hence 

d2Rij/dt2 = 2H&(t). (3.14) 

This point, insignificant in isotropic cases, was left unnoticed by Lundgren & Pointin 
(1976). 

Two separate equations for the symmetric and antisymmetric parts of the correla- 
tion tensor can be derived from (3.9) : 

m 

HZj ( t )  = Im dt‘/ b(k,t’) [L&f(t-t’) cos(k.v,t‘) @&,(k, t’) 
- w  - w  

+ Lfkiz(t-t’)sin (k.vot’) @,&(k,t‘)]d3k, (3.15) 
and 

Q) 

Hfj(t) = 1 O0 dt ’s  b(k,  t ’ )  [L&(t - t ‘ )  c0S (k .  Vo t’) @8,(k, t ’ )  
- -OD - w  

+L&jz(t-t’) sin(k-v,t’) @&,(k,t‘)]d3k, (3.16) 

with L$kjZ = $(LikjZ+ LjZik), LfkjZ = Q(LikjZ- LjZik), (3.17) 

@& = i( @kl+ @lk)  @$Z = ii( @u - @ I l k ) *  (3.18) 

Here the symmetry properties 

LtkjI(t)  = LjZik( - t ) ,  @kdk,  t ,  = @Zd - k, - t ,  (3.19) 

have been used. Fortunately, (3.15) and (3.16) are not coupled, since the function 
b(k,t’) depends only on the symmetrical part of Htj. After HZj is found by solving 
(3.15), Hf, can be calculated straightforwardly from (3.16). Together, (3.14) and 
(3.15) yield 

--- Id2% -Iw d t ’ I w  ex~[- ikk:R(t’)]  [L:kj2( t - t ’ )  cos(k.vot) @Bkl(k,t’) 
2 dt2 - w  - Q  + Lrkil(t-t‘) sin (k.vot) @“,l(k,t’)]d3k, (3.20) 

which constitutes the principal result of this section. 

function (2.5) is 
The particular form corresponding to the dynamic equation (1.2) and the Green’s 

d2Rii W dt2 = 71 e-ylt-t‘ldt’ cos(k.v,t‘) @Zj(k,t’)exp[-&kk:R(t’)]d3k. (3.21) 
- -OD 

For this particular case, the equivalent differential equation 

d4R, d2Rii s“, -- dt4 y2-+2y2 co~(k.v,t)@~~(k,t)exp[-~kk:R(t)]d~k = 0 (3.22) 
dt2 

can be derived. 
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At y - t m  and vo = 0, i.e. when the particle follows all turbulent pulsations, this 
equation coincides with Lundgren & Pointin's (1976) differential equation of the 
Lagrangian fluid velocity correlation tensor, which should be corrected for an an- 
isotropic case by using onIy the symmetric part of the spectral density @(k, t). 

4. A numerical example 
For a numerical investigation we have chosen a simple isotropic system with no 

external forces so that there is no deterministic drift of a suspended particle. For the 
isotropic case the displacement tensor can be expressed using a single function: 

Rij(t) = Y(t)Sij. 

Taking the trace of (3.21) with vo = 0 gives 
d2Y co dt2 = y 1 e-ylt-W' *@Jk, t') exp [ - $k*Y(t')] 47rk2dk. 

- w  

The corresponding form of (3.22) is 

#Qii(k,  t) exp [ - +kz Y(t)] 4nk2dk = 0. 
at4 (4.3) 

Further calculations can be performed using the Kraichnan model spectrum 

Qii(k,  t)  = (2n)-1k-2E(k) exp [ - &uo kot)'], (4.4) 

where E ( k )  = 16(2/n)*~ik~k;~exp ( -  2k2/k%) (4.5) 

and with the characteristic velocity uo defined by the normalization condition 

p ( k ) d k  = gut. 

Substituting (4.4) and (4.5) into (4.2) and integrating over k yields 

(4.7) 

where y = ktY,  7 = uOkOt and h = y/uoko. 

from the solution of (3.20) are the diffusivity 
The most important characteristics of the particle motion which can be calculated 

D . .  23 = lim QdRij/dt 

T = $(vi(t)vi(t)) = +Hii(0) = &Rii(O). 

(4.8) 
t+ w 

and the kinetic energy per unit mass of the particle 

(4.9) 

For a particle obeying the dynamic equation (1.2), it is also possible to evaluate the 
correlation tensor of the random part of the relative fluid-particle velocity 

= ([vi(t) - u,(r(t), t ) ]  [vj(t +s) - uj(r(t + s), t + s)]) = y-2(v;(t) v(i(t + s)), 
(4.10) 

and the rate of energy dissipation per unit mass of a particle 

Q = r([vi(t) - ui(r(t), t)l [vi(t) - ui(r(t), t)I) = y-Yv;(t) U)) = Y < ~ ( O ) .  (4.1 1) 
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% k O t  

FIGURE 1. Particle velocity correlation function. 

Differentiating the expression Hii(s) = (vi(t) vj(t + s ) )  and using the stationarity of 

pZi(S) = -y-2H:j(s), (4.12) 

Q =  -y -  'H,,(O) " = - (2y)-'R'?? m(0). (4.13) 

For the isotropic system, (4.8), (4.9), (4.12) and (4.13) can be rewritten using the non- 
dimensional variables defined in (4.7) in the form 

the tensors Hij and Pii gives 

hence 

(4.14) 

- 
T = uip, T = 3 4Y " ( 0 1 9  (4.15) 

(4.16) 

Q = u:ko Q, 0 = - $h-lyiv(0). (4.17) 

Anumerical solution to (4.7) subject to the initial conditions y = 0 and dyldr = 0 was 
obtained using a CSMP simulator (Continuous System Modelling Program) and an 
iterative procedure. The iterations converged rapidly for all values of the parameter h 
considered, provided that the integration was extended to a sufficient time interval. 
The physical quantities (4.14)-(4.17), as well as other functionals discussed in the 
next section, were then calculated straightforwardly with yiv evaluated using (4.3). 

- - 
pzi = upsi,, P(7) = - $A-2 Y iv (7)' 
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FIQTJRE 2. Integral-time-scale normalization of the velocity Correlation function. 

5. Discussion of results 
The particle velocity correlation function H ( t )  = &;y”(t) obtained by solving (4.7) 

is shown in figure 1.  The curves, corresponding to different values of the non-dimen- 
sional parameter h = y/uok0, are normalized by the mean particle energy per unit 
mass T = QH(0).  

All curves appear to be similarly shaped. The minor distinctions in shape become 
evident when the curves are superimposed by scaling the abscissa with the integral 
time scale 

8 = f T - l f r H ( t ) d t  

(figure 2). The main distinction between the curves in figure 1 is the increase in the 
characteristic correlation time with decreasing y ,  i.e. with growing inertial effects. At 
the same time, the energy per unit particle mass decreases from T = Qut a t  h-tco 
(which corresponds to the energy of the fluid element) to T = 0 a t  h = 0 (see figure 3).  
Since the particle diffusivity is proportional to the product of the integral time scale 
and energy, both trends compensate each other, and the diffusivity changes only 
slightly over the whole range of h (figure 3). 

Note that the results at  h -+ 0 are exact, since in this case the particle is immobile, 
and Hij(s) can beobtained directly from (2.10) using the Eulerian correlation functionof 
the fluid velocity Gi j ( t )  = G$(O, t ) .  For the particular spectrum (4.4) it gives 

D = (&r)luo/ko. 



202 L. M .  Pismen and A .  Nir 

A / ( ]  + 2 )  
FIQURE 3-The dependence of the dissipation rate, the kinetic energy per unit particle mws and 

the diffusivity on the particle relative time scale A. 

Thus, it can be expected that the assumptions used for deriving (3.9) from (3.2) become 
more accurate with decreasing A, and apply to the particle motion even better than to 
motion of fluid elements, for which they were originally suggested.? 

Quite remarkable are the curves related to the fourth derivative of the mean- 
squared particle displacement. The correlation functions of the relative fluid-particle 
velocity at different A (figure 4) do not resemble each other as closely as the particle 
velocity correlation functions in figure 1. All curves display a characteristic range of 
negative correlations. An explanation of this feature is obtained by recalling that, 
according to ( l . Z ) ,  the relative velocity correlation functions are proportional to the 
correlation functions of particle acceleration, and a positive acceleration of a particle 
at any moment makes its negative acceleration at some future moment more probable. 
The curves in figure 4, as well as in figure 1, show an increase in the characteristic 
correlation time with decreasing A. 

The most important integral characteristic of the relative fluid-particle motion is 
the energy dissipation rate per unit particle mass Q .  As can be seen in figure 3, this 
quantity approaches zero at both extremes: at h+O, which corresponds to a very 
heavy particle or to an inviscid fluid, and at h 4 00, when the relative fluid-particle 
velocity vanishes. The maximum dissipation is achieved for particles with a time 

t After this paper had been submitted for publication, Dr M. Reeks kindly sent us a copy of 
his manuscript (1977) where the ,same problem waa treated using an iterative procedure akin to 
that applied by Phythian (1975) and Levich & Pismen (1976) to turbulent self-diffusion and 
Brownian motion of particles in a random field, respectively. Both methods are complementary 
in the same manner aa those of Lundgren & Pointin (1976) and Phythian (1975), and we found 
the numerical results to be in good agreement whenever the comparison could be made. 



Motion of suspended particles in turbulence 

I I I 

- 

- 

- 
- 

203 

constant y-l of the same order of magnitude as the characteristic time (uo ko)-l of the 
pulsations corresponding to the maximum of the turbulence spectrum (4 .4 ) .  

Figures 5 and 6 depict an attempt to separate the contributions of different spectral 
components into the particle diffusivity and the rate of energy dissipation by present- 
ing these quantities in the form 

D = Sm 9 ( k ) E ( k ) d 3 k  and Q = Sm 9(k )E(k )d3k .  (5 .1 ) , (5 .2 )  
- m  - w  

Integrating (4 .2 )  once and using (4 .8)  yields 

D = i j  dt J +Oii(k, t )  exp [ - Qk2Y(t)] 4nk2dk. 
- w  0 

(5.3) 

Hence, with the spectrum (4 .4)  and the non-dimensional variables (4 .7 )  the function 
9 ( k )  defined by (5.1) becomes 

s," (5.4) 
- 
9 = k, u, 9 = exp { - 4[72 + x2y(7)]) d ~ ,  

where x = k/ko. The corresponding expression for 2 is obtained by substituting (4 .2)  
into (4 .3)  and setting t = 0. Hence, 

Yiv (0 )  = 2y2/m[ye-~t-B(t)]dt/m~Oii(k,t)exp[-~k2Y(t)] 0 0 4nk2dk, (5 .5 )  

and, in view of (4 .4 ) ,  (4 .7 ) ,  (4 .17)  and (5.2), 
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klkn 
FIGURE 5. Spectral contribution to particle diffusivities. 

Of course, the contributions of various spectral modes, as de&ed by (5.4) and (5.6), are 
not truly additive, since they depend on the mean-squared displacement Y( t ) ,  which is 
influenced by the whole spectrum of turbulence. Nevertheless, the functions 9 and 2 
may help to visualize the change of contributions of different modes when the spectrum 
of turbulence remains fixed, but the particle time constant y-l is changing. 

The curves g(x ;A)  in figure 5 are normalized by the maximum values of these 
functions at  x = 0, g(0; A )  = (+n)*. The long-wave modes, naturally, are most effective 
in enhancing the particle diffusivity. For relatively light particles, up to A = 1, the 
curves g(x; A )  remain practically unchanged. But for heavier particles, a gradual 
increase of the contribution of medium-range frequencies is observed. 

The shape of the functions J(x;  A )  (figure 6) is most remarkable. With growing A, the 
contribution of any spectral mode to the energy dissipation first grows, and then starts 
to decline. (For modes with k/ko > 5 the maximum was not actually achieved at  the 
highest value of A, for which calculations were performed.) At any fixed A, short-wave 
modes dissipate more effectively, but the growth of the relative dissipation rate with k 
is most drastic at intermediate wavelengths, with k/Eo = O(A) .  The distinction between 
nearly non-dissipative long waves and intensively dissipating short-wave modes is 
most pronounced in the case of relatively light particles (large A) .  The underlying 
physical fact is that any spectral mode ceases to dissipate when a particle becomes light 
enough to follow pulsations of the corresponding scale. 

The calculations of the energy dissipation rate should be viewed with some caution, 
since the dissipation rate, unlike the particle displacement, is strongly affected by 
short-wave modes for which both independence and the Gaussian approximation 
become questionable. Before a rigorous analysis of the implied assumptions is per- 
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FIGURE 6. Spectral contribution to dissipation rate. 

formed (e.g. along the lines of Weinstock's (1976) analysis of the problem of turbulent 
self-diffusion), the following tentative arguments in their favour can be considered: (a) 
the Gaussian and independence approximations are used directly only for calculating 
the displacement tensor, while the derivation of the dissipation rate from the displace- 
ment data is exact; (6 )  the results for the dissipation rate are exact at both extremes, 
h+O and h+m. 

Since all calculations were performed for a system with no external force and deter- 
ministic motion, all results obtained express in pure form the influence of the inertial 
effects, without interference of the 'effect of crossing trajectories'. Such a system could 
be realized experimentally only by compensating the gravity force. Were such experi- 
ments performed, the data related to dissipative processes (e.g. rates of mass transfer 
between fluid and particle) would be most valuable for an examination of the theory. 
Their sensitivity to the character of fluid and particle motion is greater than that of 
measurements of the particle displacement inasmuch as they are not obscured by 
stronger dissipation processes connected with the deterministic motion. A more 
realistic anisotropic case will be considered in a following communication. 
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